Entrer un problème...
Algèbre linéaire Exemples
[a-bb+c-3d+c2a-4d][a−bb+c−3d+c2a−4d]
Étape 1
Étape 1.1
Multiply each element of R1R1 by 1a-b1a−b to make the entry at 1,11,1 a 11.
Étape 1.1.1
Multiply each element of R1R1 by 1a-b1a−b to make the entry at 1,11,1 a 11.
[a-ba-bb+ca-b-3d+c2a-4d][a−ba−bb+ca−b−3d+c2a−4d]
Étape 1.1.2
Simplifiez R1R1.
[1b+ca-b-3d+c2a-4d][1b+ca−b−3d+c2a−4d]
[1b+ca-b-3d+c2a-4d][1b+ca−b−3d+c2a−4d]
Étape 1.2
Perform the row operation R2=R2-(-3d+c)R1R2=R2−(−3d+c)R1 to make the entry at 2,12,1 a 00.
Étape 1.2.1
Perform the row operation R2=R2-(-3d+c)R1R2=R2−(−3d+c)R1 to make the entry at 2,12,1 a 00.
[1b+ca-b-3d+c-(-3d+c)⋅12a-4d-(-3d+c)b+ca-b]⎡⎣1b+ca−b−3d+c−(−3d+c)⋅12a−4d−(−3d+c)b+ca−b⎤⎦
Étape 1.2.2
Simplifiez R2R2.
[1b+ca-b0-4da-2a2+2ab-7db-3dc+cb+c2a-b]⎡⎣1b+ca−b0−4da−2a2+2ab−7db−3dc+cb+c2a−b⎤⎦
[1b+ca-b0-4da-2a2+2ab-7db-3dc+cb+c2a-b]⎡⎣1b+ca−b0−4da−2a2+2ab−7db−3dc+cb+c2a−b⎤⎦
Étape 1.3
Multiply each element of R2R2 by -a-b4da-2a2+2ab-7db-3dc+cb+c2−a−b4da−2a2+2ab−7db−3dc+cb+c2 to make the entry at 2,22,2 a 11.
Étape 1.3.1
Multiply each element of R2R2 by -a-b4da-2a2+2ab-7db-3dc+cb+c2−a−b4da−2a2+2ab−7db−3dc+cb+c2 to make the entry at 2,22,2 a 11.
[1b+ca-b-a-b4da-2a2+2ab-7db-3dc+cb+c2⋅0-a-b4da-2a2+2ab-7db-3dc+cb+c2(-4da-2a2+2ab-7db-3dc+cb+c2a-b)]⎡⎢⎣1b+ca−b−a−b4da−2a2+2ab−7db−3dc+cb+c2⋅0−a−b4da−2a2+2ab−7db−3dc+cb+c2(−4da−2a2+2ab−7db−3dc+cb+c2a−b)⎤⎥⎦
Étape 1.3.2
Simplifiez R2R2.
[1b+ca-b01][1b+ca−b01]
[1b+ca-b01][1b+ca−b01]
Étape 1.4
Perform the row operation R1=R1-b+ca-bR2R1=R1−b+ca−bR2 to make the entry at 1,21,2 a 00.
Étape 1.4.1
Perform the row operation R1=R1-b+ca-bR2R1=R1−b+ca−bR2 to make the entry at 1,21,2 a 00.
[1-b+ca-b⋅0b+ca-b-b+ca-b⋅101][1−b+ca−b⋅0b+ca−b−b+ca−b⋅101]
Étape 1.4.2
Simplifiez R1R1.
[1001][1001]
[1001][1001]
[1001][1001]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 3
The rank is the number of pivot columns.
2