Algèbre linéaire Exemples

Trouver le rang [[a-b,b+c],[-3d+c,2a-4d]]
[a-bb+c-3d+c2a-4d][abb+c3d+c2a4d]
Étape 1
Déterminez la forme d’échelon en ligne réduite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multiply each element of R1R1 by 1a-b1ab to make the entry at 1,11,1 a 11.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Multiply each element of R1R1 by 1a-b1ab to make the entry at 1,11,1 a 11.
[a-ba-bb+ca-b-3d+c2a-4d][ababb+cab3d+c2a4d]
Étape 1.1.2
Simplifiez R1R1.
[1b+ca-b-3d+c2a-4d][1b+cab3d+c2a4d]
[1b+ca-b-3d+c2a-4d][1b+cab3d+c2a4d]
Étape 1.2
Perform the row operation R2=R2-(-3d+c)R1R2=R2(3d+c)R1 to make the entry at 2,12,1 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Perform the row operation R2=R2-(-3d+c)R1R2=R2(3d+c)R1 to make the entry at 2,12,1 a 00.
[1b+ca-b-3d+c-(-3d+c)12a-4d-(-3d+c)b+ca-b]1b+cab3d+c(3d+c)12a4d(3d+c)b+cab
Étape 1.2.2
Simplifiez R2R2.
[1b+ca-b0-4da-2a2+2ab-7db-3dc+cb+c2a-b]1b+cab04da2a2+2ab7db3dc+cb+c2ab
[1b+ca-b0-4da-2a2+2ab-7db-3dc+cb+c2a-b]1b+cab04da2a2+2ab7db3dc+cb+c2ab
Étape 1.3
Multiply each element of R2R2 by -a-b4da-2a2+2ab-7db-3dc+cb+c2ab4da2a2+2ab7db3dc+cb+c2 to make the entry at 2,22,2 a 11.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Multiply each element of R2R2 by -a-b4da-2a2+2ab-7db-3dc+cb+c2ab4da2a2+2ab7db3dc+cb+c2 to make the entry at 2,22,2 a 11.
[1b+ca-b-a-b4da-2a2+2ab-7db-3dc+cb+c20-a-b4da-2a2+2ab-7db-3dc+cb+c2(-4da-2a2+2ab-7db-3dc+cb+c2a-b)]1b+cabab4da2a2+2ab7db3dc+cb+c20ab4da2a2+2ab7db3dc+cb+c2(4da2a2+2ab7db3dc+cb+c2ab)
Étape 1.3.2
Simplifiez R2R2.
[1b+ca-b01][1b+cab01]
[1b+ca-b01][1b+cab01]
Étape 1.4
Perform the row operation R1=R1-b+ca-bR2R1=R1b+cabR2 to make the entry at 1,21,2 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Perform the row operation R1=R1-b+ca-bR2R1=R1b+cabR2 to make the entry at 1,21,2 a 00.
[1-b+ca-b0b+ca-b-b+ca-b101][1b+cab0b+cabb+cab101]
Étape 1.4.2
Simplifiez R1R1.
[1001][1001]
[1001][1001]
[1001][1001]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 3
The rank is the number of pivot columns.
2
 [x2  12  π  xdx ]